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Local automorphisms in infinite graphs are defined as those automorphisms for

which the distance (in the graph-theoretical sense) between any vertex and its

image possesses an upper bound. Abelian subgroups of direction-preserving

local automorphisms without fixed point, so-called shift groups, are used to

determine the quotient graph of infinite graphs. It is shown that the shift group,

the closest topological analogue to a translation group in crystal structures, is

isomorphic to the quotient group C/C0 of the cycle space C of the quotient graph

by some subgroup C0, its kernel. As a main consequence, the isomorphism class

of nets can be determined directly from their labeled quotient graph, without

having recourse to any embedding. A general method is formulated and

illustrated in the case of cristobalite and moganite structures. Application to

carbon and other kinds of nanotubes is also described.

1. Introduction

Nets or crystallographic nets have been defined as simple

3-connected periodic graphs. Periodicity, however, is a metric

property in the Euclidean space and cannot hold directly for a

graph. Early workers such as Chung et al. (1984) defined the

periodicity of a net as that of an embedding of higher trans-

lational symmetry. Conversely, nets can be attached to crystal

structures viewed as 1-complexes in order to represent their

topological properties. In parallel, a quotient graph can be

attributed to a net via an embedding. As a finite graph, it is

easier to handle than the net. But relationships between nets

and quotient graphs, both derived from the same crystal

structure, are not always clear. It frequently happens that

related structures have the same underlying net but different

quotient graphs, as in the case of diamond and �-cristobalite.

This difference naturally reflects distortions of the structures,

with breaking of some translational symmetry. For this reason,

it is expected that infinitely many representations of the same

net may be found when quotient graphs are systematically

generated and labeled in order to predict new crystal struc-

tures. Polyknotting is another phenomenon where a self-

penetrated network admits both the same net and the same

quotient graph as a simpler non-penetrated network (see

Carlucci et al., 2003). In all these cases, it is of fundamental

importance to attribute the isomorphism class of the net from

the labeled quotient graph.

Delgado-Friedrichs & O’Keeffe (2003) proposed an algor-

ithm to determine the true translational symmetry of a net

from its quotient graph, but the method, which was applied to

the moganite structure, is based on the use of the so-called

barycentric embedding. This paper was born from the obser-

vation that some automorphism of the labeled quotient graph

is associated with the lost translation of the moganite net.

More exactly, a new translation can be associated with that

automorphism that leaves invariant the sum of the vector

labels along the cycles of the quotient graph (see x4.5 for a

complete description). But is this the rule? Is it possible to

argue about the translational symmetry of a net in the absence

of any knowledge other than a labeled quotient graph? It

appears that an answer to this question demands some topo-

logical characterization of periodicity in infinite graphs.

Recently, Delgado-Friedrichs (2004) proposed to define a

periodic graph as a graph on which the group of integers Zn

acts freely as a subgroup of the group of automorphisms. In

addition, the number of vertex orbits under the translation

subgroup must be finite. Klee (2004) adopted a similar view-

point by defining a crystallographic net as a net whose auto-

morphism group is isomorphic to a crystallographic space

group. Both definitions are based on formal group-theoretical

properties and have been applied with success to special

classes of 3-connected graphs. Their extension to arbitrary

graphs, however, is generally not possible.

The infinite 3-connected graph on the left of Fig. 1, for

instance, admits the automorphisms � = ( . . . , Mi, Mi+1, . . . )

for M 2 {A . . . I}, �= (Ai, Ci, Ei) (Bi, Di, Fi) (Gi, Hi, Ii) and � =

��. In the embedding of Fig. 1, � is realized by a translation

and � by a screw axis. Their roles, however, can be exchanged

if the embedding is regularly twisted along its axis. Each

automorphism, � or �, determines individually a maximal

subgroup of automorphisms isomorphic to Z, each with nine

vertex orbits. This way, we can say that the graph of the infinite

prism is 1-periodic following Delgado-Friedrichs (2004).

But non-isomorphic labeled quotient graphs, shown on the

right of Fig. 1, are obtained whether � or � is used to define

the periodic structure. On the other hand, the whole



automorphism group is not isomorphic to any crystallographic

space group. Following the definition proposed by Klee

(2004), the prism is not a crystallographic net and we cannot

attribute any periodic structure to the infinite graph.

Let us take now the reverse point of view: assume that in

some systematic analysis of possible structures by the vector

method (Chung et al., 1984) we generated the two labeled

graphs shown in Fig. 1. Could we tell without prior knowledge

whether they must be rejected or are the labeled quotient

graphs of some periodic structure and, in this case, what is its

isomorphism class?

The aim of this study is to propose a graph-theoretical

characterization of periodicity that is equivalent to the

previously reported group-theoretical definitions where they

apply, but can be helpful in other cases. The concept of local

automorphism is introduced to this end and allows a partial

answer to the above questions. We shall see that the analysis of

the automorphisms of the labeled quotient graph enables one

to determine the isomorphism class of the crystallographic

nets associated with crystal structures.

Since much confusion arises from sometimes incompatible

notations used in the graph literature, we begin with a review

of the most important definitions in x2. In fact, objects such as

a walk in a graph are generally given an empirical definition;

we have found it convenient to insert the walk into the

adequate algebraic structure, which is the free group on the

edge set of the graph. In x3, the topological essence of the

translation operation in Euclidean spaces is extracted in the

notion of local automorphism, and new definitions of a peri-

odic graph and of a net are derived. Different applications are

analyzed in x4, from the description of nanotubes to the

systematic determination of the isomorphism class of periodic

graphs.

2. An incursion into graph theory

2.1. Graphs and subgraphs

Most of the following is in accordance with Harary (1972).

A graph G(V, E, m) is defined as an ordered pair of sets

(V, E), together with a function m from E to V2. The members

of the sets V and E are called respectively the vertices and

edges of the graph; the function m is called the incidence

function. If, for some edge e 2 E, m(e) = (u, v), we say that e

links the vertices u and v, which are called the ends of the edge

e. Also, e is incident with u and v. The shorthand notation e =

uv will also be used. It is possible that the two ends are

identical; in this case, the edge is called a loop. As the function

m need not be 1–1, several edges might have the same ends;

the graph is then said to have multiple edges. A graph without

loops and multiple edges is called a simple graph.

Observe that the given definition shows the edge as an

ordered pair of vertices. The edges are then naturally oriented,

which can be formally stated by using the projection functions

p1 and p2 from V2 to V defined as follows:

p1ðu; vÞ ¼ u; p1 �m ¼ �

p2ðu; vÞ ¼ v; p2 �m ¼ !:

We say that the edge e runs from u = �(e) to v = !(e).

A graph G0(V0, E0, m0) is a subgraph of the graph G(V, E, m)

if V0 and E0 are subsets of V and E, respectively, and m0 is a

restriction of m to E0. Conversely, if E0 is any subset of the

edge set of a graph G, the induced subgraph has for vertex set

the union of the images of E0 by the functions � and !. The

incidence function is clearly the restriction of m to E0.

2.2. Paths and cycles of a graph

We define 0-words and 1-words of a graph G(V, E, m) as

elements of the free groups F[V] and F[E] on the alphabets V

and E, respectively. In the sequel, words will be noted multi-

plicatively and only the reduced form of the words is consid-

ered. The length jgj of a word g =
Q

a
ni
i is the sum

P
jnij of the

absolute values of the exponents of all its letters, ai. A 1-word

g is said to decompose into a set of words gi if the following

conditions hold:

g ¼
Q

gi and jgj ¼
P
jgij:

Decompositions of a 1-word into itself and possibly the empty

word are called trivial decompositions. The boundary

morphism @ is the homomorphism from the free group F[E] to

the free group F[V] defined by @e = u�1v for the edge e = uv.

We have then

@e�1
¼ ð@eÞ�1

¼ v�1u;

suggesting that e�1 can be interpreted as the complementary

edge to e, that is the same edge considered with the reverse

orientation (see also Klein, 1996). Although this observation is

meaningless for a loop e, the complementary loop is also

defined by analogy to be its inverse e�1 in F[E].

We call closed a 1-word belonging to the kernel of @, and

two-ended a 1-word g with a boundary @g = u�1v of length 2.

The vertices u and v will be referred to as the end-points of the

two-ended word. A walk is a two-ended 1-word w that can

only decompose into a set of closed or two-ended 1-words. The

1-word � = abcdefgh of the graph drawn in Fig. 2, for example,

is two-ended since it satisfies @� = A�1D but it is not a walk

since it admits the decomposition � = �� with � = abcd and � =

efgh verifying |@� | = |A�1DE�1F| = 4. A circuit is a closed
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Figure 1
An infinite trigonal prism and two possible quotient graphs.



walk; in the same graph of Fig. 2, the 1-word � 0 = bjdefghi is an

example of a circuit.

A path is then defined as a walk that cannot contain circuits

in any decomposition. Intuitively, the edges of a path are

traversed continuously between its two ends without passing

more than once through each vertex. Analogously, a cycle is a

closed path and can be defined rigorously as a circuit that

cannot be decomposed further into smaller circuits, i.e. non-

trivial decompositions of a cycle only contain a set of paths.

The two-ended word � of the above example decomposes into

the path abc and the cycle defgh, while the circuit � 0 decom-

poses into the two paths bj and i and the cycle defgh.

A graph G is said to be connected if, for any pair of distinct

vertices u and v, there is at least one walk w of G for which

@w = u�1v. A tree is a connected graph without cycle.

A geodesic g is a shortest path between two given vertices u

and v (@g = u�1v). We define the distance d between the two

vertices in V by d(u, v) = jgj. It is easy to check that (V, d) is a

metric space. The diameter d(G) of a finite graph G is the

length of its longest geodesic.

2.3. Morphisms of graphs

A morphism of the graph G(V, E, m) to the graph

G0(V0, E0, m0) is a pair of functions (fV, fE) between the two

vertex and edge sets that preserve the incidence relationships.

This can be schematized with the following commutative

diagram.

fE : e 2 E �! e0 2 E0

??ym
??ym

fV � fV : ðu; vÞ 2 V � V �! ðu0; v0Þ 2 V 0 � V 0

In practice, however, we shall use the same symbol f for both

the edge and vertex functions. The morphism f of G to G0 can

be extended to a morphism between the corresponding free

groups by setting f ð
Q

a
ni
i Þ ¼

Q
f ðaiÞ

ni . It is clear that a

morphism of graphs commutes with the boundary morphism

(for which we use the same symbol @ in the two graphs):

@½f ðeÞ� ¼ u0�1v0 ¼ f ðu�1vÞ ¼ f ½@ðeÞ�; that is: @ � f ¼ f � @:

An isomorphism of graphs is a morphism that is also a bijec-

tive function. As usual, an automorphism of a graph G is an

isomorphism of G on itself. It clearly preserves the distances in

the vertex set. In fact, if g is a geodesic between two vertices u

and v, it is clear that f(g) is a geodesic between f(u) and f(v):

dff ðuÞ; f ðvÞg ¼ dfu; vg:

2.4. Chain modules on Z

The 0-chains and 1-chains on Z of a graph G(V, E, m) are

generally defined as formal linear combinations of the vertices

and edges of G with integer coefficients. They are thus

isomorphic to the free abelian groups on the bases V and E.

Although additive notations are normally used, we shall stick

here to the multiplicative notation to keep the continuity in

passing from words to chains. The boundary operator is

defined in the same fashion as in the word groups; the kernel

of the boundary operator will be called the cycle space and its

elements the cycle vectors. It is known that the maximum

number of independent cycle vectors is given by the cyclo-

matic number � = #E� #V + 1, where #E and #V represent the

cardinality (the number of elements) of the edge and vertex

sets, respectively.

3. Automorphisms in infinite graphs

3.1. Local automorphisms

We start from the observation that the translation in the

Euclidean space En is the only bonded isometry, in the sense

that the distance between any point and its image has an upper

bound. This metrical property can be transported to infinite

graphs; we say that f is a local automorphism of an infinite

graph G if there exists an upper bound b such that, for all

vertices v, d{v, f(v)} � b.

We check now that local automorphisms constitute a

normal subgroup of the graph group Aut(G). It is clear that

the inverse f �1 has the same upper bound b as f since

dfv; f�1ðvÞg ¼ dff ðvÞ; f ðf�1ðvÞÞg ¼ dfv; f ðvÞg:

Let f and g be two local automorphisms with upper bounds b

and c, respectively. Their product f � g is a local automorphism

since

dfv; f ðgðvÞÞg � dfv; f ðvÞg þ dff ðvÞ; f ðgðvÞÞg

� bþ dfv; gðvÞg

� bþ c:

Thus, the local automorphisms of G form a subgroup H of

Aut(G). Let f be any automorphism of G and h a local auto-

morphism with upper bound b. We have

dfv; f�1½hðf ðvÞÞ�g ¼ dff ðvÞ; hðf ðvÞÞg � b:

Thus, f �1
� h � f is also a local automorphism so that H is a

normal subgroup of Aut(G).

3.2. Shift groups, periodic graphs and nets

There is no reason, in general, why every automorphism of

an infinite graph should be associated with an isometry in
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Circuits, paths and cycles (see text).



some embedding. Fig. 3(a), for example, shows a graph that we

would like to call periodic but has local automorphisms that

exchange only two of its vertices. To avoid these cases, we

introduce the following:

Definition. A shift group of an infinite graph G is an abelian

subgroup of the group of local automorphisms of G which

have the properties that

(i) the only automorphism f with a fixed vertex, i.e. satis-

fying f(v) = v for some vertex v of G, is the identity I of

Aut(G);

(ii) no two complementary edges belong to the same orbit

(the shift group is orientation preserving).

Observe that the term orientation preserving has no

geometrical meaning. We shall call shifts the elements of a

shift group. Note that being a shift is not, in general, an

intrinsic property of the automorphism but a simple reference

to the group it belongs to. In a shift group, there is at most one

shift that carries some vertex u to another pre-defined vertex

v; suppose there were two such shifts, say f and g, then the

product g�1
� f would have u as a fixed vertex, so that g�1

� f =

I, or f = g. A group K is said to be admissible if the number of

orbits of G (vertex and edge orbits) under K is finite. Shift

groups are the closest topological analogs to translation

groups. At first sight, it might seem interesting to restrict to

shifts of infinite order but, as we shall see later, this extension

opens new perspectives in the field of descriptive chemistry.

We define now a periodic graph as an infinite graph with an

admissible shift group and a net as a simple, connected,

periodic graph, the group of local automorphisms of

which is a shift group. For example, the infinite graph in Fig.

3(a) admits three kinds of automorphisms such as

(Ai, A�i)(Bi, B�i)(Ci, C�i), (B0, C0) and ( . . . , Ai, Ai+1, . . . )

( . . . , Bi, Bi+1, . . . )( . . . , Ci, Ci+1, . . . ). The first one is not a

local automorphism since the distance d{Ai, A�i} = 2i has no

upper bound. The second is a local automorphism but has

infinitely many fixed points; it cannot belong to a shift group.

The third generates a free abelian group that is clearly an

admissible shift group; the graph is thus periodic but it is not a

net. The group of automorphisms of the graph displayed in

Fig. 3(b) admits the three generators (Ai, A�i)(Bi, B�i),

(Ai, Bi) and ( . . . , Ai, Ai+1, . . . )( . . . , Bi, Bi+1, . . . ). The second

and third generators are local automorphisms without a fixed

point. But the second generator, (Ai, Bi), transforms the

edge AiBi into the complementary edge BiAi. On the other

hand, the subgroup generated by ( . . . , Ai, Ai+1 . . . )

( . . . , Bi, Bi+1 . . . ) is clearly an admissible shift group, for

which the graph is periodic. The graph of the prism shown in

Fig. 1 is an example of a net.

Finally, we define a crystallographic net as a net with no

local automorphism of finite order; i.e. the group of local

automorphisms of a crystallographic net is a free admissible

shift group. As shown in Appendix A, this implies that the

group of automorphisms of the graph is isomorphic to a space

group, so that this definition practically meets that given by

Klee (2004). Indeed, the only difference is that 3-connectivity

has not been required. We can even say (see Appendix B) that

a crystallographic net is a connected graph with a free abelian

admissible group of local automorphisms.

3.3. Quotient graphs of a periodic graph

Let N(V, E, m) be a periodic graph and K an admissible

shift group (K need not be the whole group of local auto-

morphisms). We define the quotient graph N/K as the graph

whose vertices and edges are respectively the orbits V/K and

E/K of the vertices and edges of N under the action of K;

clearly N/K is a finite graph. An edge and a vertex of N/K are

incident if they have representatives in N that are themselves

incident. The quotient function, q, which is the function

mapping the periodic graph on its quotient graph is thus a

morphism of graphs; as in the usual case, we use the same

notation for the function on the vertex and edge sets and

extend the quotient function to a morphism from the free

groups of N to the free groups of N/K:1

q
Q

e
ni
i

� �
¼
Q

qðeiÞ
ni :

The quotient function also induces a linear function between

the corresponding chain modules on Z. The same notation, q,

will be used since no confusion is generally possible.

Our next step is to provide a representation of the periodic

graph from its quotient graph. We choose for this an arbitrary

vertex o of N and its image O = q(o) in N/K as the origin of the

periodic graph and of its quotient graph, respectively. The

infinite graph and its quotient graph are said to be based. We

observe then that the quotient map carries a walk w from o to

some vertex v of N to a walk q(w) in N/K from q(o) to q(v). If,

moreover, v belongs to the orbit of o under K, then q(w) is a

circuit of N/K. Let us call a walk starting at the origin a based

walk. Conversely, any based walk W of N/K determines a

unique vertex in the based periodic graph N. To prove this, we

need to lift W to a unique walk w in N starting at the origin of
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Figure 3
Two 1-periodic graphs.

1 Here, the full meaning of the orientation-preserving condition can be made
clear. Assume that an edge e and its complementary e�1 belong to the same
orbit, i.e. q(e) = q(e�1). Then: q(ee�1) = q(1) = 1 = q(e)q(e�1) = q(e)2, from
which it appears that the map q would not be a morphism between free groups.



the graph. We shall define v = o@w, so that o�1v = @w with

q(w) = W. The proof is by induction on the length of the walk

in N/K. Consider first a based walk of length 1 and call e the

unique edge of W starting at O; its inverse image q�1(e) is the

orbit of the edges mapped on e and originating from the

vertices of the orbit q�1(O) to which o belongs. But there is

just one edge of q�1(e) starting at o; if there were two such

edges (from the same orbit), there would exist a shift

exchanging them ( 6¼ I) so that their initial vertex o would be a

fixed point, which is impossible; let us call this edge q�1
o ðeÞ.

Then o@q�1
o ðeÞ is the ending vertex of this edge in the periodic

graph. The same argument can be carried out in the induction

step if the walk is decomposed as W = eW0, and the induction

hypothesis is applied to W0 with jW0j = jWj � 1. If we call

q�1
o ðWÞ the lifted walk, we find v = o@q�1

o ðWÞ. If the infinite

graph is connected, the set of all based walks in N/K gives a

complete representation of N. In particular, the set of all based

circuits in N/K provides a complete representation of the orbit

of the origin under the shift group K. This representation is

onto but it is not 1–1; many different based circuits of the

quotient graph may generate the same vertex in the periodic

graph.

3.4. Representation of the shift group

Consider an element f of the shift group K; the image

f fq�1
o ðWÞg of the lift q�1

o ðWÞ is an equivalent walk in N, which

means that it is mapped on the same walk W in N/K by the

quotient morphism. Moreover, this walk starts at f(o), from

which we deduce

f fq�1
o ðWÞg ¼ q�1

f ðoÞðWÞ:

On the other hand, the image of the origin can be represented

by f(o) = o@q�1
o ðCÞ for some based circuit C of N/K, since this

vertex belongs to the orbit of o. Take now an arbitrary vertex v

of N represented by the walk q�1
o ðWÞ starting at the origin. We

can construct a walk to the image of this vertex by concate-

nation of the two walks q�1
o ðCÞ, running from the origin to its

image f(o) and the image walk f fq�1
o ðWÞg. This observation

allows representation of the shift as the function that carries

the vertex

v ¼ o@q�1
o ðWÞ to

f ðvÞ ¼ o@q�1
o ðCÞ@q

�1
f ðoÞðWÞ ¼ o@q�1

o ðCWÞ: ð1Þ

Conversely, given any based circuit C of N/K, its lift q�1
o ðCÞ

defines a vertex o@q�1
o ðCÞ belonging to the orbit of the origin.

We can thus associate with C the unique shift fC of K that

sends the origin to this vertex through the above formula (1);

this defines a function ’: C! fC 2 K, which is clearly onto.

Consider now a new origin o0 ¼ o@q�1
o ðC

0Þ of the same orbit

q�1(O) and the shift g = ’(C0) sending o to o0. We get

successively [by applying formula (1) for f and g, and by

commutativity of shifts]:

f ðo0Þ ¼ o@q�1
o ðCC0Þ ¼ f � gðoÞ ¼ g � f ðoÞ ¼ o@q�1

o ðC
0CÞ

¼ o0@q�1
o0 ðCÞ: ð2Þ

This last expression for f(o0) is formally similar to that for f(o),

which shows that the given representation of the shift by the

circuit C is independent of the vertex chosen as origin of the

periodic graph in the same orbit. This conclusion allows the

formal reading of equations (2) as ’(CC0) = ’(C) � ’(C0) =

’(C0) � ’(C) = ’(C0C), which holds for any pair of based

circuits C and C0.

Moreover, the set of based circuits of the quotient graph

N/K forms a subgroup � of the corresponding free group

F[E]. It comes then that ’ is a group homomorphism; the

kernel �0 of ’ is the subgroup of the based circuits C of N/K

that the inverse quotient function sends to circuits in N:

@q�1
o ðCÞ = 0. The shift group K is then isomorphic to the

quotient group �/�0.

3.5. Change of base point

Consider a circuit C based on a vertex A of the quotient

graph N/K (see Fig. 4a), and some vertex B 6¼ A on C. More

exactly, consider the decomposition C = uv with @u = A�1B

and @v = B�1A and note:

CA ¼ uv

CB ¼ vu;

where the subscript indicates the base point for the corre-

sponding circuit.

Let us calculate the image of some vertex b of the orbit

q�1(B), with a 2 q�1(A) and b = a@q�1
a ðuÞ as the origins of the

periodic graph when A and B are used as the base points of the

quotient graph, respectively.

Take A as the base point; the image of b by the shift f =

’(CA) is given by

f ðbÞ ¼ a@q�1
a ðCAuÞ ¼ a@q�1

a ðuvuÞ ¼ a@q�1
a ðuÞ@q

�1
b ðvuÞ

¼ b@q�1
b ðvuÞ ¼ b@q�1

b ðCBÞ:

The last result is the same as would have been obtained by

using B as the base point with origin b and the shift g = ’(CB).

This means that we can perform a circular permutation on the
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walks in any decomposition of the circuit C without affecting

the result. We can write this as ’(CA) = ’(CB) = ’(C), where

reference to the base point can be dropped.

We can now announce the fundamental result that each

circuit of � in the representation of any shift can be substi-

tuted by the product of the cycles it maps in the 1-chain space

of the quotient graph. A complete demonstration can easily be

done by induction on the total number of repeated vertices

along the circuit but, instead, we shall deal with the example

given in Fig. 4(b).

Take O as the base point and a circuit C, decomposed as

follows:

C ¼ aC1a�1bucC1c�1vb�1:

A first change of base point equivalent to the permutation of

the initial walk, a, with the sequel is performed.

’ðCÞ ¼ ’ðC1a�1bucC1c�1vb�1aÞ

¼ ’ðC1Þ’ða
�1bucC1c�1vb�1aÞ;

where the factorization of C1 is by homomorphism of ’.

Applying two permutations on a and b and reducing the new

word, we get

’ðCÞ ¼ ’ðC1Þ’ðucC1c�1vÞ:

Permutation on the product uc and factorization of C1 gives

’ðCÞ ¼ ’ðC1Þ’ðC1c�1vucÞ ¼ ’ðC1Þ
2’ðc�1vucÞ:

Permutation of the walk c and formation of the cycle C2 finally

gives:

’ðCÞ ¼ ’ðC1Þ
2’ðC2Þ:

As a consequence, the homomorphism ’ can be factorized

through the cycle space C of the quotient graph. The shift

group K is then isomorphic to the quotient group C/C0 of the

cycle space by some subgroup C0. The highest possible shift

group associated with some quotient graph is obtained when

the kernel C0 is reduced to the identity. In this case, the shift

group is isomorphic to the abelian free group generated by an

independent set of cycles of the quotient graph N/K. This is

the same maximum property that led Beukemann & Klee

(1992) to the definition of the minimal net associated with the

quotient graph.

3.6. Labeled quotient graphs

Periodic graphs with non-trivial kernels can be better

described by labeled quotient graphs. The same procedure as

used by Chung et al. (1984) to describe three-dimensional

crystallographic nets can be followed. One needs to choose a

spanning tree; the edges that do not belong to the spanning

tree represent independent cycles of the quotient graph and

receive different labels ci of a set c symbolizing the free basis

of the cycle space. Now, if C0 is not reduced to the identity of

C, one can find a presentation [c : r] of the quotient group C/C0

with a set of relators r written as combinations of the elements

of the basis c. If possible, the set of labels is simplified in order

to take into account the relators. That is: a set of independent

generators is chosen to express the elements of the basis set c.

Otherwise, the relators are directly reported on the quotient

graph. It is known that such groups [c : r] are isomorphic to

direct products of cyclic groups (these groups are abelian by

definition): we say that the graph is n-periodic if the subgroup

of infinite cyclic groups of the quotient group C/C0 is

isomorphic to Zn.

4. Applications

4.1. Planar graphs and nanotubes

Consider the graph K3
2 shown in Fig. 5 with cyclomatic

number 2. The cycle space is generated by the two cycles

denoted a and b. The minimal net corresponding to the

graphite structure is obtained for C0 = {1}, i.e. generated by the

free basis {a, b}. Two examples of periodic graphs corre-

sponding to non-trivial kernels are described in Fig. 5, with

relators an and anbnon the left and on the right, respectively

(with n = 3). Both describe different possible structures for

carbon nanotubes, where the exponent n indicates the

dimension of the perimeter of the tube and the cycle vector, a

or ab, refers to the orientation of the carbon 6-ring in relation

to the axis of the tube. In both cases, it is easy to verify that the

complete group of local automorphisms is not an admissible

shift group. The topology of carbon nanotubes is thus

described by 1-periodic graphs.

Another example is provided by the graph K4, shown in Fig.

6. The minimal net is known to be the three-dimensional srs

net generated by the free basis {a, b, c}. Using c as the single

relator, the planar net (3.92, 93) is generated. In the same way,

with bc as single relator, the planar net 4.82 is obtained; but

adding the relator an generates a 1-periodic tube. The relator

bc introduces the 4-ring in the planar net, while an folds it in

the a direction. The axis of the tube is along the b (or c)

direction and, as in the previous case, n indicates the perimeter

of the tube.
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Figure 5
The labeled quotient graph K3

2 (top) and two carbon nanotube structures
described by the relators a3 (left) and a3b3 (right), with their axis running
parallel to the height of the figure.



4.2. Extension of the shift group

Suppose the quotient graph N/K of a periodic graph N has

been obtained for a subgroup K of a higher admissible shift

group H and let f be a shift of H that is not in K. By hypothesis,

f commutes with any shift s of K. Consider two vertices (or

edges, respectively) x and y of N in the same orbit under K,

and a shift s sending x to y: s(x) = y. Then, we have

f ðyÞ ¼ f � sðxÞ ¼ s½f ðxÞ�;

so that f(x) and f(y) also belong to the same orbit under K.

This shows that f induces a function � in N/K, which is clearly

an automorphism of the quotient graph since it preserves

incidence relations.

Consider now a cycle C of N/K and its image �(C) (see the

schema in Fig. 7); both cycles define the shifts ’(C) and

’[�(C)] of K. Let a = o@q�1
o ½C� = ’(C){o} be the image of the

origin o [with q(o) 2 C for simplicity] by ’(C); then, the image

of a by f is given by

f ðaÞ ¼ f ðoÞ@q�1
f ðoÞ½�ðCÞ� ¼ ’½�ðCÞ�ff ðoÞg:

But we can write

o ¼ ½’ðCÞ��1fag ¼ ’ðC�1Þfag

f ðaÞ ¼ ’½�ðCÞ�ff ðoÞg ¼ ’½�ðCÞ� � f � ½’ðC�1
Þ�fag:

Since f commutes with the shift ’(C�1), we find that f(a) is a

fixed point of the product shift ’[�(C)] � [’(C�1)] =

’[�(C)C�1], which is then the identity I, so that the product

�(C)C�1 is a cycle vector of the kernel C0. Thus, the auto-

morphism � of the quotient graph N/K induces the auto-

morphism identity on the quotient group C/C0. In other words,

� exchanges cycles of the same label in the labeled quotient

graph.

Conversely, let � 6¼ I be an automorphism of N/K that

leaves identically invariant the quotient group C/C0. Define a

function f in N by:

f ðo@q�1
o ½W�Þ ¼ o@q�1

o ½��ðWÞ�;

where � is some fixed walk from the origin O of the quotient

graph to its image �(O) and the walk W of N/K describes any

vertex of the periodic graph. Clearly, the image only depends

on the vertex and not on the particular walk used to describe it

since, for another equivalent walk W0 = CW with C 2 C0, we

have �(W0) = �(C)�(W), with �(C) 2 C0, so that the walks

�(W0) and �(W) describe the same vertex after lifting.

It is useful to observe the following relations:

f ðoÞ ¼ o@q�1
o ½��;

f ðo@q�1
o ½W�Þ ¼ f ðoÞ@q�1

f ðoÞ½�ðWÞ�:

The function f is onto and 1–1. Indeed, it is easy to check that it

has an inverse f�1 defined by:

f�1
ðo@q�1

o ½W�Þ ¼ o@q�1
o ½�

�1
ð��1
Þ��1
ðWÞ�:

It is shown in Appendix C that f is a local automorphism. We

shall check here that f commutes with any shift s = ’(C) of the

group K. Consider some vertex a = o@q�1
o ½W� of the periodic

graph and its image by the product f�1
� s � f:

f�1
� s � f ðaÞ ¼ f�1

� sðo@q�1
o ½��ðWÞ�Þ

¼ f�1ðo@q�1
o ½C��ðWÞ�Þ

¼ o@q�1
o ½�

�1
ð��1
Þ��1
ðC��ðWÞÞ�:

Since ��1 is an automorphism of N/K, the walk inside the

square brackets can be re-written as ��1(��1C�)W. But then

(��1C�) and consequently ��1(��1C�) are circuits of N/K so

that we get

f�1 � s � f ðaÞ ¼ o@q�1
o ½�

�1ð��1C�ÞW� ¼ ’ð��1ðCÞÞfag:

Remembering that � (and thus its inverse) leaves the quotient

group C/C0 invariant, we have ’[��1(C)] = ’(C), and finally

f�1
� s � f ðaÞ ¼ ’ð��1

ðCÞÞfag ¼ ’ðCÞfag ¼ sðaÞ:

That is: f�1
� s � f = s, or s � f = f � s.

If � (or its powers �n
6¼ I) has a fixed point in N/K, then, by

combining � with some shift of K, we obtain a local auto-

morphism of N with a fixed vertex, so that � cannot be used to

extend the shift group. The same argument applies if � (or its

powers �n
6¼ I) transforms some edge to the complementary

edge in N/K; otherwise it is possible to extend K by f to get a

larger shift group. In particular, if N is a crystallographic net,
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Figure 6
The labeled quotient graph K4 (bottom) and an srs nanotube described by
the relators bc and a2 (top), with axis running parallel to the width of the
figure.

Figure 7
Schema of a based cycle and its image by an automorphism of the
quotient graph (top) with the respective lifted walk and its image in the
infinite graph (bottom).



any automorphism of its quotient graph that exchanges cycles

of the same label in the labeled quotient graph can be used to

extend the shift group. This conclusion allows the formal

determination of the isomorphism class of the crystallographic

net underlying some crystal structure by analysis of the

automorphisms of its labeled quotient graph.

4.3. Illustrations

Consider the graph shown in Fig. 8(a); it is the quotient of

the 1-periodic graph of Fig. 3(a) under the action of the shift

group described in x3.2. The edges have all been numbered

arbitrarily and labeled in accordance with a presentation of

the quotient group C/C0, as described in x3.6. The auto-

morphism (e2, e3), referring to the exchange of the ‘dangling’

edges numbered 2 and 3 on the figure, leaves the cycle space

invariant, as well as the vertex A. It cannot extend the shift

group; worse, it evidences the existence of local automorph-

isms of the 1-periodic group that do not respect the orbits

under the shift group.

The graph displayed in Fig. 8(b) is the quotient graph of the

1-periodic graph of Fig. 3(b), where the periodic structure is

defined by the third generator mentioned in x3.2. The auto-

morphism (e1, e2)(e3, e�1
3 ) leaves the quotient group C/C0

invariant but it changes the orientation of edge e3: it cannot be

used to extend the shift group.

The graph in Fig. 8(c) is the quotient graph of a 2-periodic

graph with free basis {a, b}. The automorphism � =

(e1, e2)(e3, e4) leaves the quotient group C/C0 invariant and has

no fixed vertex nor inverted edge: the automorphism induced

in the 2-periodic graph can be used to extend the shift group.

Define it as above by f(o) = o@q�1
o ½e3�, where the origin o

belongs to the orbit q�1(A). Since �2 = I, the induced auto-

morphism f 2 is just a shift, but we have

f 2ðoÞ ¼ f ðo@q�1
o ½e3�Þ ¼ o@q�1

o ½e3�ðe3Þ� ¼ o@q�1
o ½e3e4�

¼ ’fbgðoÞ:

This result indicates that f 2 is the same automorphism as ’{b}.

If we now extend the shift group by the ‘half’ shift, a reduced

quotient graph can be obtained. This has only one vertex, the

class {A, B} since both vertices are equivalent by �, and two

edges formed by the classes {1, 2} and {3, 4}, as shown in Fig.

8(d). Labeling of the reduced quotient graph is obtained by

lifting the two independent cycles in the quotient graph of Fig.

8(c): {1, 2} is lifted to e1 or e2 with label a, while {3, 4} is lifted to

e3, which is now associated with the new half shift denoted b0.

This new quotient graph is clearly that of the square net; the

labeled graph of Fig. 8(c) is thus a quotient of the square net

under a subgroup of index two of the full shift (translation)

group of the 2-periodic net.

Let us go back to the example of the prism analyzed in the

Introduction. Both labeled quotient graphs shown on the right

of Fig. 1 possess an automorphism of order three leaving the

quotient group C/C0 invariant. In the graph on the top right,

for example, it is given by the permutation of the vertices

(A, C, E)(B, D, F)(G, H, I). These automorphisms have

neither fixed point nor inverted edge, so they can be used to

extend the shift group. The same labeled quotient graph is

obtained after factorization in both cases and is shown in Fig. 9.

In particular, the shift associated with the third power of the

new shift is given by a cycle of the kernel C0 of the quotient

graph, so that it satisfies the relation a3 = I, as indicated in the

figure. It is then clear that both labeled quotient graphs of

Fig. 1 represent the same net (there is no non-trivial auto-

morphism leaving the final quotient group C/C0 invariant),

which is not a crystallographic net since there is a shift of finite

order.

4.4. Low and high cristobalite

Consider the labeled quotient graph of Fig. 10(a), which is

isomorphic to that of the low-temperature form of cristobalite.

The automorphism � = (e1, e8)(e2, e7)(e3, e6)(e4, e5) leaves the

quotient group C/C0 invariant and has neither fixed vertex nor

inverted edge: the automorphism induced in the 3-periodic

graph can be used to extend the shift group. Define it by f(o) =

o@q�1
o ½e1e�1

5 �, where the origin o belongs to the orbit q�1(A).
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Figure 8
Labeled quotient graphs of the 1-periodic graphs in Fig. 3 (a and b,
respectively), labeled quotient graphs of the square net using a double
cell (c) and a primitive cell (d).

Figure 9
Labeled quotient graph of the infinite prism pictured in Fig. 1.



Since �2 = I, the induced automorphism f 2 is just a shift, but we

have

f 2ðoÞ ¼ f ðo@q�1
o ½e1e�1

5 �Þ ¼ o@q�1
o ½e1e�1

5 �ðe1e�1
5 Þ�

¼ o@q�1
o ½e1e�1

5 e8e�1
4 � ¼ ’fcgðoÞ;

so that f 2 is equal to ’{c}. Writing c0 the new generator, we

obtain the labeled quotient graph of Fig. 10(b) as follows. The

edge {1, 8} is chosen as the unique edge of the spanning tree.

To obtain the label of edge {2, 7}, we lift the cycle {2, 7}{1, 8}�1

in the quotient of Fig. 10(a) from the vertex A, for example.

There is just one way to get a walk starting at A using the

edges of these two classes, which is e2e�1
1 : this in turn is labeled

by the generator a, which is then the label of edge {2, 7}. In the

same way, the cycle {1, 8}{4, 5}�1 is lifted to e1e�1
5 , from which

we attribute the label c0�1 to the new edge {4, 5}. Now, we use

the cycle {3, 6}{4, 5}�1 to obtain the last label; this is lifted from

A to e3e�1
4 with label b. But we already know the label of {4, 5}

to be c0�1 so that the remaining edge {3, 6} must be labeled

bc0�1.

With all the edges labeled by independent generators, the

net is isomorphic to the diamond net or the high-temperature

form of cristobalite. We deduce that both the low- and high-

temperature forms of cristobalite are described by the same

net and are correlated by a periodic distortion along the c axis

of the low-temperature form.

4.5. Moganite revisited

Fig. 11 displays the quotient graph of the moganite form of

SiO2. The graph was labeled by applying the program

TOPOLAN to the data of Heaney & Post (2001). With 12

edges (numbered from 1 to 12) and six vertices (from A to F),

the quotient graph has cyclomatic number 7; since it has a

planar embedding, the seven independent cycles (C1 to C7) of

the cycle space have been chosen from the regions delimited

on the plane of the drawing and marked on the quotient

graph. The orientation of all independent cycles is counter-

clockwise. For example, cycle C3 is defined by the sequence

e6e5e�1
10 and corresponds to the translation vector b of the

moganite cell. It is easy to check that the other two basis

vectors of the primitive cell are given by the cycle vectors

C�1
1 ðaÞ and C1C2(c). The kernel C0 is generated by the four

cycle vectors C1C�1
7 , C2C�1

6 , C3C�1
5 and C1C2C3C4. Now, the

automorphism � = (e1, e�1
8 )(e2, e�1

7 )(e3, e6)(e4, e5)(e9, e12)

(e10, e11) leaves the quotient group C/C0 invariant and has no

fixed vertex nor inverted edge: the automorphism induced in

the 3-periodic graph can be used to extend the shift group.

Define it by f(o) = o@q�1
o [e2e6], where the origin o belongs to

the orbit q�1(A). Once again, �2 = I and the induced auto-

morphism f 2 is just a translation:

f 2ðoÞ ¼ f ðo@q�1
o ½e2e6�Þ ¼ o@q�1

o ½e2e6�ðe2e6Þ�

¼ o@q�1
o ½e2e6e�1

7 e3� ¼ ’fbcgðoÞ;

so that f 2 is equal to ’{bc}. Writing u for the new generator and

using the same method as explained above, we obtain the

labeled quotient graph shown in Fig. 12. The labeled quotient

graphs of Figs. 11 and 12 represent the same net. This is a

crystallographic net since there is no non-trivial auto-

morphism leaving the quotient group C/C0 invariant. The new

shift describes a true automorphism of the moganite net that is

not necessarily associated with a translation of the structure in

the Euclidean space. On the contrary, it permits a description

of moganite as reported by Heaney & Post (2001), as a
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Figure 10
Labeled quotient graphs of the low-temperature form of cristobalite (a)
and of the associated net (b).

Figure 12
Labeled quotient graph of the net associated with moganite.

Figure 11
Labeled quotient graph of moganite.



modulation of a simpler idealized structure along the 011 (bc)

axis of the actual form.

5. Concluding remarks

The concept of local automorphism in infinite graphs under-

lying crystal structures has been introduced to allow a topo-

logical characterization of those automorphisms associated

with translation symmetries in the crystal. A crystallographic

net was defined as a connected graph whose local auto-

morphisms form a free abelian admissible group. It has been

shown that this definition is equivalent to that of Klee (2004),

i.e the group of automorphisms of a crystallographic net is

isomorphic to a space group.

It was then shown that the translation group of crystal

structures is isomorphic to the quotient group C/C0 of the

cycle space C of the quotient graph by some subgroup C0, its

kernel. It is thus equivalent to describe the net by a labeled

quotient graph or by its bare quotient graph together with an

independent family of circuits defining the kernel C0 of the

cycle space. The isomorphism class of the crystallographic net

underlying the structure can be completely determined by

the labeled quotient graph obtained under any translation

subgroup. The method can be summed up in the following

steps.

1. List all automorphisms of the labeled quotient graph that

preserve its kernel C0 (the rings of the crystal structure).

2. Choose the automorphisms that map the cycles of the

quotient graph to cycles of the same label. The existence,

among these, of automorphisms with fixed points or inverted

edges show that the graph is not the quotient graph of a

crystallographic net.

3. Automorphisms without fixed vertices or inverted edges

and leaving the quotient group C/C0 invariant can be used to

factor the quotient graph. This step must be repeated until

factorization is no longer possible.

4. The final quotient graph must be labeled by lifting its

cycles to paths or cycles of the starting quotient graph. The

resulting labeled quotient graph provides the isomorphism

class of the crystal structure.

APPENDIX A

Following a theorem from Schwarzenberger (1980), an

abstract group with a normal free abelian subgroup which is

maximum abelian and has finite index is isomorphic to a space

group.

Consider then an infinite graph N whose group of local

automorphisms L(N) is a free admissible shift group. We

already know that L(N) is normal. Let f be an automorphism

that commutes with every local automorphism s. Then

dfsðuÞ; f ½sðuÞ�g ¼ dfsðuÞ; s½f ðuÞ�g ¼ dfu; f ðuÞg

so that the distance between a vertex and its image by f is

constant over the whole orbit. From the admissibility condi-

tion, the number of orbits of L(N) is finite and so there is a

maximum value over the distances by f. Thus, f is a local

automorphism and L(N) is maximum abelian.

It is clear that an automorphism of the infinite graph

respects the orbits under the normal subgroup L(N) and thus

induces an automorphism of the quotient graph G. In fact, the

factor group Aut(N)/L(N) is isomorphic to the subgroup of

Aut(G) that leaves the kernel invariant. Since G is a finite

graph, the factor group is obviously finite, which completes the

proof that Aut(N) is isomorphic to a crystallographic space

group.

APPENDIX B

This Appendix proves that the group of local automorphisms

L(N) of an infinite graph N is a shift group if it is a free abelian

admissible group. It is sufficient to verify that a local auto-

morphism with a fixed point would have finite order, since the

square of an automorphism that exchanges two complemen-

tary edges has at least two fixed vertices.

Suppose there exist a local automorphism f and a vertex u

satisfying f(u) = u. Then, for all local automorphisms s,

f ½sðuÞ� ¼ s½f ðuÞ� ¼ sðuÞ;

meaning that the whole orbit of u under L(N) is fixed by f.

Choose a vertex v from another orbit; since f is an auto-

morphism of N, we have, for any integer value n,

dfu; f nðvÞg ¼ dfu; vg:

But the number of vertices at this same distance from u is

finite (it is implicitly assumed that the graph has finite degree).

There is thus a smallest integer m verifying f m(v) = v. As

above, then, the whole orbit of v is fixed by f m. Now, since the

number of orbits under L(N) is finite, we can take the least

common multiple p of the m values over all orbits: clearly,

f p = I.

APPENDIX C

This Appendix shows that the function f defined in x4.1 is a

local automorphism.

(a) Preservation of incidence relationships

Let a and b be two vertices of the periodic graph linked by

the edge e, so that b = a@e, and let W be a walk in N/K

describing the vertex a: a = o@q�1
o ½W�. It is easily verified that

W0 = Wq(e) is a walk in N/K describing b, so that

f ðbÞ ¼ f ðo@q�1
o ½W

0�Þ

¼ f ðoÞ@q�1
f ðoÞ½�ðWÞ�ðqðeÞÞ�

¼ f ðaÞ@q�1
f ðaÞ½�ðqðeÞÞ�;

which shows that f(a) and f(b) are linked by an edge of the

orbit q�1{�[q(e)]}.

(b) Existence of an upper bound

Let A be the ending vertex of the walk W in the quotient

graph defining some point a of the periodic graph, so that A =

O@W and a = o@q�1
o ½W�. Let gA be a geodesic from O to A in
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N/K; note that the length |gA| is smaller than the diameter of

the quotient graph d(G). Then, the product Wg�1
A is a circuit of

N/K (with origin at O) and can be decomposed into a product

C of cycles Ci, Wg�1
A =

Q
Ci = C. If we choose the equivalent

walk W0 = Wg�1
A gA = CgA to describe the vertex a, then we

have �(W0) = �(C)�(gA).

The cycle vectors C and �(C) of N/K can now be used to

construct a lift from the vertex a to its image f(a). We obtain

this lift by concatenating the walk q�1
a ½g

�1
A C�1� running from a

to o and the walk q�1
o ½��ðW

0Þ� = q�1
o ½��ðCÞ�ðgAÞ� running from

o to f(a):

f ðaÞ ¼ a@q�1
a ½g

�1
A C�1��ðCÞ�ðgAÞ�:

Before going on, we shall show that the lifted walk can be

reduced if we take into account the invariance of the quotient

group C/C0 by the automorphism �. Consider the lift of the

simpler circuit C�1��(C)��1 from the origin:

oq�1
o ½C

�1��ðCÞ��1
� ¼ ’fC�1��ðCÞ��1

gðoÞ

¼ ’fC�1�ðCÞgðoÞ

¼ 1ðoÞ ¼ o:

Set x = oq�1
o ½C

�1��ðCÞ�, then

oq�1
o ½C

�1��ðCÞ��1
� ¼ xq�1

x ½�
�1
� ¼ o:

This last result is equivalent to x = oq�1
o ½��, which allows the

conclusion

x ¼ oq�1
o ½C

�1��ðCÞ� ¼ oq�1
o ½��:

The expression for f(a) can thus be reduced:

f ðaÞ ¼ a@q�1
a ½g

�1
A C�1��ðCÞ�ðgAÞ� ¼ a@q�1

a ½g
�1
A ��ðgAÞ�:

And we get finally dfa; f ðaÞg � jg�1
A ��ðgAÞj � j�j þ 2dðGÞ.
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fruitful comments regarding the group-theoretical equivalence

of the two definitions of crystallographic nets discussed here.

The author thanks CNPq (Conselho Nacional de Desenvol-

vimento Cientı́fico e Tecnológico of Brazil) for support during

this work.

References

Beukemann, A. & Klee, W. E. (1992). Z. Kristallogr. 201, 37–51.
Carlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev.

246, 247–289.
Chung, S. J., Hahn, Th. & Klee, W. E. (1984). Acta Cryst. A40, 42–50.
Delgado-Friedrichs, O. (2004). Lecture Notes Comput. Sci. 2912,

178–189.
Delgado-Friedrichs, O. & O’Keeffe, M. (2003). Acta Cryst. A59,

351–360.
Harary, F. (1972). Graph Theory. New York: Addison-Wesley.
Heaney, P. J. & Post, J. E. (2001). Am. Mineral. 86, 1358–1366.
Klee, W. E. (2004). Cryst. Res. Technol. 39, 959–960.
Klein, H.-J. (1996). Math. Model. Sci. Comput. 6, 325–330.
Schwarzenberger, R. L. E. (1980). N-Dimensional Crystallography.

London: Pitman.

Acta Cryst. (2005). A61, 501–511 Jean-Guillaume Eon � Crystallographic nets 511

research papers


